The Gesture Recognition Toolkit
نویسندگان
چکیده
The Gesture Recognition Toolkit is a cross-platform open-source C++ library designed to make real-time machine learning and gesture recognition more accessible for non-specialists. Emphasis is placed on ease of use, with a consistent, minimalist design that promotes accessibility while supporting flexibility and customization for advanced users. The toolkit features a broad range of classification and regression algorithms and has extensive support for building real-time systems. This includes algorithms for signal processing, feature extraction and automatic gesture spotting.
منابع مشابه
GART: The Gesture and Activity Recognition Toolkit
The Gesture and Activity Recognition Toolit (GART) is a user interface toolkit designed to enable the development of gesturebased applications. GART provides an abstraction to machine learning algorithms suitable for modeling and recognizing different types of gestures. The toolkit also provides support for the data collection and the training process. In this paper, we present GART and its mac...
متن کاملA Gesture Recognition Design Toolkit Everyday Gesture Library
Creating gestural recognition system is a challenging task which requires skills and updated applications. It is required for designer to be skillful and innovative in order to create interesting and acceptable gestures. Gesture Recognition Design Toolkit (GRDT) is set of tools designed to simplify the gesture creation process for non experts. From designing a new gesture, to suggesting the bes...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014